Фил Харрингтон

телескоп от 15 дюймов Космический вызов: Крест Эйнштейна

2 сообщения в этой теме

krest.jpg.925f62a409555fc80ecbd875090422Диапазон апертуры, рекомендованный в этом месяце: гигантские телескопы от 15 дюймов (38 см) и выше

Объект: Крест Эйнштейна


Просмотреть полную статью

1 пользователю понравилось это

Поделиться сообщением


Ссылка на сообщение

Рекомендуем

Система борьбы с росой R-Sky
map2Контроллеры R-Sky позволяют плавно контролировать температуру нагрева и значительно экономят заряд аккумуляторов. Узнать подробнее...
Потеют окуляры?
map2Грелки на окуляры R-Sky - лучшее решение проблемы запотевания и замерзания окуляров. Узнать подробнее...
Защитные чехлы
map2Новинка! Защитные чехлы и колпаки на телескопы. Надежная защита от пыли и влаги!
Узнать подробнее...

Вот здесь есть интересные отчеты о наблюдении этого объекта любителями. Язык английский https://www.astronomy-mall.com/Adventures.In.Deep.Space/crossch.htm

 

Поделиться сообщением


Ссылка на сообщение

Создайте аккаунт или войдите для комментирования

Вы должны быть пользователем, чтобы оставить комментарий

Создать аккаунт

Зарегистрируйтесь для получения аккаунта. Это просто!


Зарегистрировать аккаунт

Войти

Уже зарегистрированы? Войдите здесь.


Войти сейчас
  • Похожие публикации

    • Космический вызов: Крест Эйнштейна
      Автор: Фил Харрингтон
      В прошлом месяце я бросил вам вызов, предложив испытание для невооруженного глаза. Сейчас у нас полная противоположность: Крест Эйнштейна.
       
      Одним из предсказаний Общей теории относительности Альберта Эйнштейна 1916 года  было то, что свет от яркого отдаленного источника энергии должен отклоняться, «огибать» крупный объект, расположенный между этим источником и наблюдателем. При этом время, за которое свет достигает наблюдателя, изменится, в результате чего фоновый объект будет выглядеть увеличенным и искаженным.
       
      Так гласит теория Эйнштейна, но как ее проверить? Наиболее крупные близлежащие объекты, известные в то время, например Солнце, одновременно были и очень яркими. Всё, что расположено позади такого объекта, настолько тускло по сравнению с ним, что будет казаться невидимым.
       
      Сэр Артур Стэнли Эддингтон, ведущий британский астрофизик того времени, придумал решение: всё-таки использовать Солнце, но не в произвольный день, а во время полной фазы солнечного затмения, когда диск Луны полностью блокирует слепящую фотосферу. Предстоящее затмение 29 мая 1919 года было идеальным. Не только из-за необычайной продолжительности, но и потому что Солнце располагалось прямо перед звездным скоплением Гиады в Тельце, а значит будет множество звезд в окрестностях Солнца, на которых можно проверить теорию Эйнштейна. И хотя успешность этой экспедиции была под большим вопросом из-за всего — от природных туч и дождей до туч Первой мировой войны — наблюдения Эддингтона зафиксировали рядом с Солнцем те звезды, которые в это время на самом деле должны были находиться позади него. Эйнштейн оказался прав: гравитация может отклонять свет.
       

      Выше: осенняя звездная карта из книги Star Watch Фила Харрингтона.
       

      Выше: поисковая карта рубрики «Космический вызов» этого месяца, взята из книги Cosmic Challenge Фила Харрингтона. Кликните по ссылке, чтобы загрузить версию для печати.
       
      Этот отклоняющий эффект известен сегодня как гравитационное линзирование. На фотографиях, сделанных с помощью космического телескопа «Хаббл», а также многих наземных инструментов, хорошо виден этот эффект: призрачные изображения отдаленных квазаров и галактик, парящие рядом с галактиками переднего плана. Вместо единственного изображения отдаленного квазара гравитационная линза формирует несколько его изображений. В зависимости от формы этой линзы (т.е. гравитационного воздействия на далекий свет) преломленное изображение может быть растянуто и искривлено всевозможными способами. А если галактика расположена идеально по прямой между квазаром и Землей, мы увидим симметричное кольцо квазаров.
       
      С эстетической точки зрения наиболее совершенной гравитационной линзой является крест Эйнштейна, образованный галактикой PGC 69457 (или CGCG 378-15) и квазаром QSO 2237+0305 в Пегасе. PGC 69457 также известна под неофициальным названием Линза Хухры, поскольку ее открыл Джон Хухра, профессор космологии Гарвардского университета. По современным оценкам эта маленькая, во всем остальном непримечательная спиральная галактика располагается в 400 миллионах световых лет от нас. Квазар прячется далеко позади нее на немыслимом расстоянии в 8 миллиардов световых лет. Если бы не гравитационное линзирование, квазар оставался бы скрытым галактикой, поскольку для земного наблюдателя они находятся практически на одной линии. Но Линза Хухры разбивает древний свет квазара на четыре отдельных пути, скользящих по галактике подобно тому, как вода в ручье струится вокруг камня. В итоге получается не одно, а четыре призрачных изображения QSO 2237+0305, которые окружают ядро PGC 69457 практически идеальным ромбом.
       
       
      Крест Эйнштейна находится южнее «головы» и «шеи» летучего коня (Пегаса) и к западу от Венца Рыб. Чтобы найти его, начните со звезды Бихам [теты (θ) Пегаса] и переместитесь на 5° юго-восточнее к треугольнику, образованному звездами 34, 35 и 37 Пегаса. Продлите линию от 35 до 37 Пегаса в пять раз дальше (2½°) на юго-восток, и она приведет вас к оранжевой звезде 8-й величины SAO 127671. Поместите ее в центр поля и найдите звезду 11-й величины в 6' северо-восточнее. Эта звезда очень удобна для откладывания расстояния, поскольку Крест Эйнштейна находится еще на 6' дальше к северо-востоку.
       

      Выше: зарисовка Креста Эйнштейна через 18-дюймовый (46 см) рефлектор автора на увеличении 411×
       
      Хотя Крест Эйнштейна имеет 15-ю звездную величину, я с трудом вижу его боковым зрением в 18-дюймовый рефлектор при наблюдении в пригороде, где предельная звездная величина для невооруженного глаза составляет 5,0. Но как я ни старался, даже на 411× в те редкие моменты, когда видимость на мгновение проявляла подобную щедрость, всё, что я мог заметить, это тусклый, почти звездоподобный объект, который вы можете видеть на картинке выше. У меня никогда не получалось отделить четыре изображения квазара от галактики; наоборот, все пять расплываются в один объект. Другие наблюдатели сообщают об успехе, увидев одну или две дольки при наблюдении через большие апертуры под безусловно превосходным небом. Абсолютно необходимы высокое увеличение и, следовательно, устойчивая видимость, поскольку угловой размер Креста всего 1,6 угловых секунды.
       
      Обязательно поделитесь результатами на форуме этой колонки!
       
      У вас есть свой интересный сложный объект? Я, как и другие читатели, буду рад узнать о нем, а также о том, что у вас получилось с испытанием этого месяца. Пишите сообщения в комментариях к статье или в обсуждении этой рубрики на форуме.
       
      Помните, что половина удовольствия — это азарт охоты. Игра началась!
       
          Автор Phil Harrington
      Адаптированный перевод с английского RealSky.ru
      Публикуется с разрешения автора.
      Сайт автора www.philharrington.net
      Оригинал статьи на www.CloudyNights.com
    • Космический вызов: Квинтет Стефана
      Автор: Фил Харрингтон
      Октябрь 2017 года
      Диапазон апертуры, рекомендованный в этом месяце: телескопы от 10 до 14 дюймов (25–36 см)
      Объект: Квинтет Стефана — группа галактик

      Просмотреть полную статью
    • Космический вызов: Квинтет Стефана
      Автор: Фил Харрингтон
      Холст, на котором рисуется наша картина Вселенной, базируется на незыблемости закона Хаббла. Закон Хаббла гласит, что существует связь между расстоянием до галактики и скоростью, с которой она удаляется от нас. Чем дальше галактика, тем больше ее скорость и тем больше ее спектральные линии смещаются в сторону красного конца спектра.
       

      Выше: осенняя звездная карта из книги Star Watch Фила Харрингтона.
       

      Выше: поисковая карта рубрики «Космический вызов» этого месяца, взята из книги Cosmic Challenge Фила Харрингтона. Кликните по ссылке, чтобы загрузить версию для печати. 
       
      Чтобы закон Хаббла и принцип красного смещения были справедливы, они должны работать не просто для нескольких галактик, а для всех. И это действительно так... почти. В наблюдаемой Вселенной существует несколько пресловутых исключений из этих правил. Один из самых известных парадоксов можно найти на осеннем небе, менее чем в полутора градусах к югу от яркой галактики NGC 7331 в Пегасе. Квинтет Стефана был обнаружен в 1877 году директором Марсельской обсерватории Эдуардом Стефаном (1837–1923). С тех пор эта группа была предметом множества детальных исследований и горячих споров.
       
      Как следует из названия, Квинтет Стефана включает пять галактик. Первая, NGC 7317, благодаря своему слегка овальному диску была отнесена к эллиптическим (E2). Следующая, NGC 7318, на момент ее обнаружения Стефаном считалась единым объектом, но теперь известна как две отдельные перекрывающиеся системы. NGC 7318a отмечена как эллиптическая E2, также как и NGC 7317, а NGC 7318b является спиралью SBb с перемычкой.  NGC 7320 тоже была признана спиральной галактикой с перемычкой SBb, а NGC 7319 — SBd-спиралью с широкими рукавами. Все галактики толпятся в тесной 20-дюймовой области. Все они приведены в таблице ниже.
       
      Объект
      RA
      DEC
      Зв.вел
      Размер
      NGC 7317
      22 35.9
      +33 56.7
      13.6
      0.8'x0.7'
      NGC 7318a
      22 35.9
      +33 57.9
      14.3b
      0.8'x0.6'
      NGC 7318b
      22 36.0
      +33 58.0
      13.9b
      1.4'x0.9'
      NGC 7319
      22 36.1
      +33 58.6
      13.1
      1.5'x1.1'
      NGC 7320
      22 36.1
      +33 56.9
      13.2
      2.3'x1.1'
       
      Споры вокруг этих пяти галактик связаны с различиями в красном смещении их спектров, откуда следует, что они находятся на совершенно разном расстоянии от нас. Четыре галактики (NGC 7317, 7318a, 7318b и 7319), судя по всему, удаляются от нас со скоростью в среднем 6000 км/сек, что соответствует расстоянию порядка 270 миллионов световых лет. Измеренное красное смещение пятой, NGC 7320, всего 800 км/с, что указывает на расстояние около 35 миллионов световых лет до нее. В чем же тут дело?
       
      Дальнейшее исследование детальных фотографий группы показало частичное разрешение NGC 7320 с уровнем детализации, который свойствен относительно близким галактикам. Остальные четыре галактики квинтета демонстрируют лишь размытые черты, что вроде бы говорит о том, что они расположены гораздо дальше. На основании этих фактов, а также  различия в красном смещении многие астрономы делают вывод, что NGC 7320 — случайный объект переднего плана, который просто проецируется на более отдаленный квартет галактик. Оказалось, что красное смещение этой галактики соответствует значению NGC 7331, т.е. они вполне могут быть гравитационно связаны. Дополнительные исследования Мариано Молеса (Mariano Moles) из Института фундаментальной физики в Мадриде указывают на то, что NGC 7318b тоже сама по себе и не связана с группой.
       
      Квинтет Стефана бросает вызов не только космологическим теориям, но и наблюдательным навыкам астрономов-любителей. Получится ли у вас различить эту группу?
       
      Двойная галактика NGC 7318a/b показалась мне самой яркой в группе. В 10-дюймовый рефлектор она выглядит как небольшое свечение 13-й звездной величины размером около 1 × ½ угловой минуты. Два ее ядра заметны лишь боковым зрением, и то с трудом, на увеличении больше 250×. Вызывающая споры NGC 7320 кажется немного тусклее NGC 7318a/b, но в два раза больше. Визуально ее диск с мимолетно мелькнувшим центральным ядром охватывает примерно 2' × 1'.
       

      Выше: зарисовка Квинтета Стефана через 18-дюймовый (46 см) рефлектор автора на увеличении 171×.
       
      Из двух оставшихся галактик NGC 7317 занимает меньше 0,5 угловой минуты в поперечнике и даже на высоких увеличениях выглядит как слегка размытая «звезда». Вдобавок
      ее крошечный диск 14-й величины скрывается за «ослепляющим» светом звезды с блеском 12, расположенной всего в нескольких угловых секундах.
       
      Наконец, мы добрались до NGC 7319. Эта галактика самая крупная, однако она произвела на меня впечатление самой сложной для наблюдения. При звездной величине 13 у нее очень низкая поверхностная яркость, что затрудняет обнаружение. Можно заметить что-то похожее на центральную звезду, но только после дополнительного исследования боковым зрением. Я считаю, что лучше не прилагать чрезмерных усилий, пытаясь разглядеть тусклые, рассеянные объекты типа этого. Любое напряжение будет порождать «шум» между глазом наблюдателя и мозгом, и в результате достаточно ослабить внимание, чтобы вообще потерять едва различимую цель.
       
      У вас есть свой интересный сложный объект? Я, как и другие читатели, буду рад узнать о нем, а также о том, что у вас получилось с испытанием этого месяца. Пишите сообщения в комментариях к статье или в обсуждении этой рубрики на форуме.
       
      Помните, что половина удовольствия — это азарт охоты. Игра началась!
       
        Автор Phil Harrington
      Адаптированный перевод с английского RealSky.ru
      Публикуется с разрешения автора.
      Сайт автора www.philharrington.net
      Оригинал статьи на www.CloudyNights.com
       
      Книга Фила Харрингтона "Cosmic Challenge", из которой выросла данная рубрика, доступна для приобретения.