Поиск по сайту

Результаты поиска по тегам 'телескоп 10-14 дюймов'.

  • Поиск по тегам

    Введите теги через запятую.
  • Поиск по автору



Фильтр по количеству...

Страна


Интересы


Город


Телескоп


Второй телескоп


Бинокль


Фотокамера

Найдено 61 результат

  1. Знаете ли вы, что осенью 1973 года я открыл комету?   Я вышел побродить по осеннему небу с легендарным 8-дюймовым рефлектором Ньютона Criterion RV-8 Dynascope и заметил, что звезды не фокусируются как надо. Решив, что сбилась юстировка телескопа, я нацелился на ближайшую яркую звезду, чтобы ее проверить. После небольшой корректировки всё наладилось, поэтому я навел фокус на ту же звезду, чтобы проверить прибор, прежде чем двигаться дальше.   Подумать только, прямо возле звезды я увидел тусклое пятнышко света! Я всё перепроверил. Это не внутреннее отражение или оптическая аберрация. Всё, что я видел, было реально! И этого не было в моем звездном атласе (в то время я использовал Небесный атлас Skalnate Pleso).   Выше: осенняя звездная карта из книги Star Watch Фила Харрингтона.   Выше: поисковая карта рубрики «Космический вызов» этого месяца, взята из книги Cosmic Challenge Фила Харрингтона. Кликните по ссылке, чтобы загрузить версию для печати.    Мое воодушевление схлынуло, когда я вспомнил, что как-то читал в колонке Уолтера Скотта Хьюстона Deep-Sky Wonders о малонаблюдаемой галактике в Андромеде. Выяснилось, что я «обнаружил» NGC 404, далекую карликовую линзовидную галактику класса S0, которая по случаю оказалась всего в 8 минутах от моей тестовой звезды в эту ночь — Мираха (беты [ß] Андромеды) 2-й звездной величины. Плакала моя слава.   NGC 404 по прозвищу Призрак Мираха по очевидным причинам стала с тех пор моим любимым маленьким сокровищем. Благодаря близости к Мираху найти эту крошечную систему достаточно просто. Направьте свой телескоп в сторону Мираха и — та-дам! — вы на месте.   Но теперь возникает проблема увидеть NGC 404. Галактика с блеском 11,2 более чем в 4300 раз тусклее звезды. В результате даже малейшая дымка или оптическое загрязнение пылью рассеивает звездный свет по полю зрения и уничтожает призрачный облик галактики.   Выше: зарисовка NGC 404 через 4-дюймовый (10,2 см) рефрактор автора.   Итак, нам нужна стратегия. Народная мудрость гласит: чтобы найти сложный объект, столь близкий к подавляюще яркой помехе, нужно разделить их. Выберите окуляр, который обеспечивает достаточно высокое увеличение, чтобы сделать это, и выведите Мирах из поля зрения, охотясь за галактикой. Лучшую пару для обнаружения галактики моему 4-дюймовому рефрактору f/9,8 составил 12-мм окуляр Плёссла (зарисовка выше). Несмотря на то что поле охватывает больше 30 минут в поперечнике, оно достаточно узкое, чтобы я мог отодвинуть звезду и различить галактику.   Если видимость позволяет, попробуйте похожий набор, но с добавлением высококачественной двукратной линзы Барлоу. Этот дополнительный штрих должен немного облегчить наблюдение галактики, но только при условии резкой фокусировки. Используйте для проверки фокуса Мирах, а затем уберите его из поля зрения и подождите несколько секунд, чтобы глаза снова адаптировались к темноте.   Что касается моего открытия, похоже, Уильям Гершель обскакал меня на 189 лет; он наткнулся на NGC 404 в 1784 году. Интересно, проверял ли он тогда юстировку телескопа на Мирахе?   У вас есть свой интересный сложный объект? Я, как и другие читатели, буду рад узнать о нем, а также о том, что у вас получилось с испытанием этого месяца. Пишите сообщения в комментариях к статье или в обсуждении этой рубрики на форуме.   Помните, что половина удовольствия — это азарт охоты. Игра началась!   Автор Phil Harrington Адаптированный перевод с английского RealSky.ru Публикуется с разрешения автора. Сайт автора www.philharrington.net Оригинал статьи на www.CloudyNights.com   Книга Фила Харрингтона "Cosmic Challenge", из которой выросла данная рубрика, доступна для приобретения.      
  2. NGC 404   Диапазон апертуры, рекомендованный в этом месяце: маленькие телескопы или большие бинокли от 2,8 до 5 дюймов (7–12,7 см)   Объект: галактика NGC 404   Просмотреть полную статью
  3. Продам телескоп Meade DS 2080-Диаметр 80 мм-Фокус 800 мм-В комплекте пара окуляров и диагональное зеркалоТелескоп в хорошем состоянии.Имеется пара потёртостей на трубе и треноге.По требованию предоставлю дополнительные фото.Продаю т.к.достался от товарища и мне он не нужен,у меня доб 8.Цена 15 т.р.+пересыл с СПБ за ваш счёт.     Продам монокуляр МП2 7х50В Комплекте:-Твердый чехол из кожи-Ремешок на монокуляр(кожа)Состояние оптики на 5+.На корпусе имеется пара потёртостей.При необходимости предоставлю дополнительные фото.Цена 6000 руб.+пересыл из СПБ.  
  4. Космический вызов: Квинтет Стефана

    Холст, на котором рисуется наша картина Вселенной, базируется на незыблемости закона Хаббла. Закон Хаббла гласит, что существует связь между расстоянием до галактики и скоростью, с которой она удаляется от нас. Чем дальше галактика, тем больше ее скорость и тем больше ее спектральные линии смещаются в сторону красного конца спектра.   Выше: осенняя звездная карта из книги Star Watch Фила Харрингтона.   Выше: поисковая карта рубрики «Космический вызов» этого месяца, взята из книги Cosmic Challenge Фила Харрингтона. Кликните по ссылке, чтобы загрузить версию для печати.    Чтобы закон Хаббла и принцип красного смещения были справедливы, они должны работать не просто для нескольких галактик, а для всех. И это действительно так... почти. В наблюдаемой Вселенной существует несколько пресловутых исключений из этих правил. Один из самых известных парадоксов можно найти на осеннем небе, менее чем в полутора градусах к югу от яркой галактики NGC 7331 в Пегасе. Квинтет Стефана был обнаружен в 1877 году директором Марсельской обсерватории Эдуардом Стефаном (1837–1923). С тех пор эта группа была предметом множества детальных исследований и горячих споров.   Как следует из названия, Квинтет Стефана включает пять галактик. Первая, NGC 7317, благодаря своему слегка овальному диску была отнесена к эллиптическим (E2). Следующая, NGC 7318, на момент ее обнаружения Стефаном считалась единым объектом, но теперь известна как две отдельные перекрывающиеся системы. NGC 7318a отмечена как эллиптическая E2, также как и NGC 7317, а NGC 7318b является спиралью SBb с перемычкой.  NGC 7320 тоже была признана спиральной галактикой с перемычкой SBb, а NGC 7319 — SBd-спиралью с широкими рукавами. Все галактики толпятся в тесной 20-дюймовой области. Все они приведены в таблице ниже.   Объект RA DEC Зв.вел Размер NGC 7317 22 35.9 +33 56.7 13.6 0.8'x0.7' NGC 7318a 22 35.9 +33 57.9 14.3b 0.8'x0.6' NGC 7318b 22 36.0 +33 58.0 13.9b 1.4'x0.9' NGC 7319 22 36.1 +33 58.6 13.1 1.5'x1.1' NGC 7320 22 36.1 +33 56.9 13.2 2.3'x1.1'   Споры вокруг этих пяти галактик связаны с различиями в красном смещении их спектров, откуда следует, что они находятся на совершенно разном расстоянии от нас. Четыре галактики (NGC 7317, 7318a, 7318b и 7319), судя по всему, удаляются от нас со скоростью в среднем 6000 км/сек, что соответствует расстоянию порядка 270 миллионов световых лет. Измеренное красное смещение пятой, NGC 7320, всего 800 км/с, что указывает на расстояние около 35 миллионов световых лет до нее. В чем же тут дело?   Дальнейшее исследование детальных фотографий группы показало частичное разрешение NGC 7320 с уровнем детализации, который свойствен относительно близким галактикам. Остальные четыре галактики квинтета демонстрируют лишь размытые черты, что вроде бы говорит о том, что они расположены гораздо дальше. На основании этих фактов, а также  различия в красном смещении многие астрономы делают вывод, что NGC 7320 — случайный объект переднего плана, который просто проецируется на более отдаленный квартет галактик. Оказалось, что красное смещение этой галактики соответствует значению NGC 7331, т.е. они вполне могут быть гравитационно связаны. Дополнительные исследования Мариано Молеса (Mariano Moles) из Института фундаментальной физики в Мадриде указывают на то, что NGC 7318b тоже сама по себе и не связана с группой.   Квинтет Стефана бросает вызов не только космологическим теориям, но и наблюдательным навыкам астрономов-любителей. Получится ли у вас различить эту группу?   Двойная галактика NGC 7318a/b показалась мне самой яркой в группе. В 10-дюймовый рефлектор она выглядит как небольшое свечение 13-й звездной величины размером около 1 × ½ угловой минуты. Два ее ядра заметны лишь боковым зрением, и то с трудом, на увеличении больше 250×. Вызывающая споры NGC 7320 кажется немного тусклее NGC 7318a/b, но в два раза больше. Визуально ее диск с мимолетно мелькнувшим центральным ядром охватывает примерно 2' × 1'.   Выше: зарисовка Квинтета Стефана через 18-дюймовый (46 см) рефлектор автора на увеличении 171×.   Из двух оставшихся галактик NGC 7317 занимает меньше 0,5 угловой минуты в поперечнике и даже на высоких увеличениях выглядит как слегка размытая «звезда». Вдобавок ее крошечный диск 14-й величины скрывается за «ослепляющим» светом звезды с блеском 12, расположенной всего в нескольких угловых секундах.   Наконец, мы добрались до NGC 7319. Эта галактика самая крупная, однако она произвела на меня впечатление самой сложной для наблюдения. При звездной величине 13 у нее очень низкая поверхностная яркость, что затрудняет обнаружение. Можно заметить что-то похожее на центральную звезду, но только после дополнительного исследования боковым зрением. Я считаю, что лучше не прилагать чрезмерных усилий, пытаясь разглядеть тусклые, рассеянные объекты типа этого. Любое напряжение будет порождать «шум» между глазом наблюдателя и мозгом, и в результате достаточно ослабить внимание, чтобы вообще потерять едва различимую цель.   У вас есть свой интересный сложный объект? Я, как и другие читатели, буду рад узнать о нем, а также о том, что у вас получилось с испытанием этого месяца. Пишите сообщения в комментариях к статье или в обсуждении этой рубрики на форуме.   Помните, что половина удовольствия — это азарт охоты. Игра началась!     Автор Phil Harrington Адаптированный перевод с английского RealSky.ru Публикуется с разрешения автора. Сайт автора www.philharrington.net Оригинал статьи на www.CloudyNights.com   Книга Фила Харрингтона "Cosmic Challenge", из которой выросла данная рубрика, доступна для приобретения.    
  5. Октябрь 2017 года   Диапазон апертуры, рекомендованный в этом месяце: телескопы от 10 до 14 дюймов (25–36 см) Объект: Квинтет Стефана — группа галактик Просмотреть полную статью
  6. Звезда 61 Лебедя не является ни яркой, ни визуально примечательной. Невооруженным глазом она выглядит так же, как любая другая точка 5-й величины глубоко в Млечном Пути, протекающем через Лебедя.   Но внешность обманчива! У этой обычной на вид звезды есть поистине замечательная особенность — необычайно высокое собственное движение. Если наблюдать и отмечать ее положение относительно звезд на протяжении нескольких лет, положение звезды будет меняться на удивление быстро. В настоящее время собственное движение 61 Лебедя составляет более 5 угловых секунд в год.   Выше: летняя звездная карта из книги Star Watch Фила Харрингтона.   Выше: поисковая карта рубрики «Космический вызов» этого месяца, взята из книги Cosmic Challenge Фила Харрингтона.      Почему так быстро? Во-первых, она неподалеку. Расположенная на расстоянии всего 11,4 светового года 61 Лебедя является четвертой из ближайших к нашей Солнечной системе звезд, заметных невооруженным глазом (хотя и лишь под темным небом). Однако три более близкие звезды — альфа Центавра, Сириус и эпсилон Эридана — не демонстрируют столь высокого движения. Так чем же отличается 61 Лебедя? Другие, может быть, и ближе, но 61 быстрее. Эта звездная система имеет фактическую пространственную скорость 108 км/с относительно Солнца. Вот что заставляет 61 жать на газ и мчаться во весь опор!   Итальянский астроном Джузеппе Пиацци (1746–1826), которому также принадлежит честь открытия первого астероида (прошу прощения, «карликовой планеты») Цереры, первым заметил быстрое движение 61 Лебедя после завершения в 1804 году 10-летнего исследования. Пиацци назвал ее «Летящая звезда», это прозвище сохранилось за ней до сих пор.   Любопытно, что Пиацци не упомянул о том, что 61 Лебедя — двойная звезда, хотя оба звездных компаньона должны были быть видны в его телескоп. Только в 1830 году немецкий астроном Фридрих фон Струве (1793–1864) сообщил, что 61 Лебедя является двойной системой.   Спустя восемь лет после Струве еще один немецкий астроном, Фридрих Бессель (1784–1846), измерил годичный параллакс 61 Лебедя, став первым, кто использовал этот тригонометрический метод для вычисления расстояния до звезд. Его оценка в 10,4 светового года впечатляюще близка к современному значению 11,4.   Теперь мы знаем, что 61 Лебедя — это пара оранжевых звезд (типа K), каждая из которых меньше, холоднее и старше нашего Солнца. Основное солнце, 61 Лебедя A, сияет с блеском 5,2. Звездная величина 61 Лебедя B составляет 6,0. Звезды разделяет примерно 30 угловых секунд. В бинокль 8×40 я лишь различаю, что 61 выглядит «овальной», а в 10×50 уже могу разрешить пару. Другие наблюдатели, очевидно с более острым зрением/оптикой, сообщают о четком разделении на 8×. Попробуйте сами и опишите свой опыт в обсуждении этой статьи.   Если вы всё-таки не можете полностью разрешить пару, не переживайте — время на вашей стороне. По мере обращения звезд вокруг друг друга по 650-летней орбите разрыв между 61 Лебедя A и B будет расширяться с нашей точки наблюдения. Как показано на диаграмме ниже, максимальной ширины пара достигнет примерно в 2100 году, когда видимое разделение составит 34".   Выше: видимый путь 61 Лебедя B вокруг 61 Лебедя A. Пара достигнет максимально широкого разделения ориентировочно через 83 года.   Однако реальная сложность, которую представляет 61 Лебедя, заключается не в разделении двойной. Она, скорее, в мониторинге и обнаружении их совместного собственного движения на протяжении нескольких лет. На приведенной выше карте показан путь пары от 1900 до 2100 года. Обратите внимание, как 61 Лебедя A и B проходили по обе стороны от фоновой звезды 11-й величины в период с 2010 по 2015 год. Эта звезда, GSC 3168:590, фактически оказалась между компонентами 61 еще в 2011 году. На мгновение 61 Лебедя стала фальшивой тройной звездой. Если вы наблюдали за звездой в этот период, поделитесь опытом на нашем форуме.   Выше: собственное движение 61 Лебедя с интервалами в один год. Фото: IndividusObservantis (собственная работа) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], на Викискладе.   Сейчас пара 61 прошла дальше, оставив GSC 3168:590 позади. Используйте поисковую карту выше, чтобы следить за продвижением звезд, отмечая их точное местоположение примерно раз в год. Это позволит вам лично убедиться в том, что Пиацци увидел более 200 лет назад: 61 Лебедя действительно летящая звезда.   У вас есть свой интересный сложный объект? Я, как и другие читатели, буду рад узнать о нем, а также о том, что у вас получилось с испытанием этого месяца. Пишите сообщения в комментариях к статье или в обсуждении этой рубрики на форуме.   Помните, что половина удовольствия — это азарт охоты. Игра началась!   Автор Phil Harrington Адаптированный перевод с английского RealSky.ru Публикуется с разрешения автора. Сайт автора www.philharrington.net Оригинал статьи на www.CloudyNights.com   Книга Фила Харрингтона "Cosmic Challenge", из которой выросла данная рубрика, доступна для приобретения.  
  7. Сентябрь 2017 года   Диапазон апертуры, рекомендованный в этом месяце: гигантские бинокли, от 3 до 5 дюймов (телескопы от 75 до 125 мм)   Объект: 61 Лебедя — летящая звезда Пиацци Просмотреть полную статью
  8. Космический вызов: пропеллер в M13

    В этом месяце мы погрузимся в глубокий космос, чтобы рассмотреть одну из самых впечатляющих целей из каталога Шарля Мессье: M13, Большое шаровое скопление Геркулеса. Выше: летняя звездная карта из книги Star Watch Фила Харрингтона.   Выше: поисковая карта рубрики «Космический вызов» этого месяца, взята из книги Cosmic Challenge Фила Харрингтона.      Трудно найти объект более впечатляющий в телескоп, чем шаровые скопления. Каждый шаровик содержит от сотен тысяч до нескольких миллионов звезд, и все они толпятся вокруг ядра, настолько плотного, что попытка рассмотреть отдельные точки бросает вызов разрешающей способности. Тем не менее, вид всё равно впечатляющий.   На непритязательный взгляд все шаровые скопления могут выглядеть одинаково. Просто большой звездный шарик, да? Ничего подобного. Если присмотреться, каждый из них имеет свою индивидуальность, и зачастую со скрытыми внутри сокровищами.   M13, большое шаровое скопление в могучем Геркулесе, является прекрасным примером вышесказанного. Чтобы заметить, что звезды M13 распределены асимметрично, не нужна двузначная апертура. Восьмидюймовые (20 см) инструменты и даже меньшие покажут расположение звезд в виде кривых или бороздок. Многие сравнивают вид скопления с пауком. Джон Гершель описал кластер как демонстрирующий «похожие на волосы криволинейные ответвления». Позже лорд Росс увидел М13 как «более отчетливо выделяющееся и более яркое, чем ожидалось; необычно окаймляющие шаровидную фигуру отростки, которые разветвляются в окружающее пространство».   Просмотр заметок, которые я сделал во время наблюдения в 10-дюймовый телескоп на 58×, вызвал в памяти неровные вереницы звезд, разбегающиеся из плотного ядра скопления. Две тонкие нити, изгибающиеся к западу, особенно бросились мне в глаза. Эти звездные цепочки создают впечатление, что М13 так быстро несется через пространство, что оставляет за собой звездный след.   Добавление увеличения на 10 дюймах до 181× выявляет сюрприз, который трудно заподозрить при более низких значениях. Звездные полоски всё так же очевидны, но внутри ядра, к юго-востоку от точного центра, скрываются три тонкие темные дорожки, которые, объединившись, формируют букву Y. Этот комбинированный эффект прозвали пропеллером M13.     Выше: зарисовка M13 и его пропеллера через мой 10-дюймовый (25 см) Ньютон.   Эти необычные полосы, или пропеллер, как многие их называют, были впервые обнаружены Биндоном Стоуни примерно в 1850 году. В то время Стоуни был астрономом, работающим на лорда Росса в замке Бирр в Парсонтауне (Ирландия). После того как исходное наблюдение Стоуни получило огласку, множество наблюдателей подтвердили существование этих уникальных темных провалов с помощью инструментов до 6 дюймов (15 см). Но поскольку фотография снизила потребность в точных визуальных наблюдениях, пропеллер M13 потерялся в свечении яркого ядра.   Выше: зарисовка М13 Стоуни. Ширина лопастей сильно преувеличена, но общая форма верная.   Уолтер Скотт Хьюстон воскресил темные полосы Стоуни в своей колонке Deep-Sky Wonders в июльском выпуске 1953 года журнала Sky&Telescope. Однако в то время это упоминание вызвало слабый отклик. Но благодаря настойчивости Хьюстона и Добсоновской революции пропеллер стал популярной сложной задачей в 1980-х. Сегодня, еще три десятилетия спустя, множество современных любителей видели пропеллер M13.   Большинство фотографий M13 не показывают пропеллер, потому что ядро скопления обычно настолько передержано, что полосы поглощаются свечением. Однако пропеллер можно увидеть, если использовать более короткую выдержку, предназначенную для разрешения ядра. Я сделал приведенную здесь фотографию несколько лет назад через 100-мм апохроматический рефрактор, обзор которого я тогда делал для журнала Astronomy.   Выше: на этом изображении, сделанном автором через 100-миллиметровый апохроматический рефрактор, заметен пропеллер M13.   Для успешного визуального наблюдения ключевым является увеличение. Возьмете слишком низкое — и полосы останутся скрытыми. Чтобы увидеть полосы своими глазами, дождитесь, когда кластер будет высоко в небе, вдали от какой бы то ни было дымки и светового загрязнения, которые могут заглушить их. В идеальных условиях темные полосы очевидны в 12-дюймовый телескоп. Их соединенные концы напоминают фирменный логотип знаменитого немецкого автопроизводителя, что в очередной раз доказывает, что M13 —  мерседес среди шаровых скоплений.   У вас есть свой интересный сложный объект? Я, как и другие читатели, буду рад узнать о нем, а также о том, что у вас получилось с испытанием этого месяца. Пишите сообщения в комментариях к статье или в обсуждении этой рубрики на форуме.   Помните, что половина удовольствия — это азарт охоты. Игра началась! Автор Phil Harrington Адаптированный перевод с английского RealSky.ru Публикуется с разрешения автора. Сайт автора www.philharrington.net Оригинал статьи на www.CloudyNights.com   Книга Фила Харрингтона "Cosmic Challenge", из которой выросла данная рубрика, доступна для приобретения.
  9. Диапазон апертуры, рекомендованный в этом месяце: телескопы от 10 до 14 дюймов (25–36 см)   Объект: пропеллер в шаровом скоплении М13 со звездной величиной 5,8 и размером 20'   Просмотреть полную статью
  10. Телескоп Levenhuk Skyline PRO 105 MAK

    Продам телескоп Levenhuk Skyline PRO 105 MAK. К телескопу: окуляр 10мм; окуляр 25мм; 23000рТакже продам окуляр Deepsky Plano 6,5мм - 3000р.; линза Барлоу 2х - 2000р; Т-кольцо на Canon - 1000р. Все вместе со скидкой.
  11. Космический вызов: Антенны

    Четыре наиболее яркие звезды в созвездии Ворона сияют не ярче звездной величины 2,6, однако характерный трапециевидный рисунок созвездия в этой области весеннего неба, в остальном небогатой звездами, позволяет ему на удивление хорошо выделяться даже при среднем световом загрязнении.   Воспользуемся этим, исследуя одну из наиболее известных пар взаимодействующих галактик: NGC 4038 и NGC 4039, «Антенны».   Выше: весенняя звездная карта из книги Star Watch Фила Харрингтона демонстрирует положение сложного объекта этого месяца.   Выше: поисковая карта рубрики «Космический вызов» этого месяца, взята из книги Cosmic Challenge Фила Харрингтона.    Именно, мы найдем две галактики, участвующие в смертельном небесном состязании по перетягиванию каната. Каждую из них раздирает гравитация другой. По мере развития событий возросший импульс позволяет галактикам ускользнуть от чужого захвата, чтобы в далеком будущем неизбежно сойтись снова и продолжить борьбу лицом к лицу. И хотя вероятность столкновения отдельных звезд невелика по причине их большого разброса, обе галактики в конечном итоге исказятся до неузнаваемости.   Ниже представлено фото из архивов космического телескопа «Хаббл», на котором мы видим облака ярко-розового и красного ионизированного водорода, окружающие синие области звездообразования, переплетенные с темными участками пыли. Скорость звездообразования настолько велика, что Антенны называют «лучистыми галактиками». Однако это не навечно. Они продолжат бороться, обматывая себя друг вокруг друга, пока не превратятся в одну большую эллиптическую галактику.   Выше: изображение, сделанное космическим телескопом «Хаббл», использует наблюдательные данные в видимом, а также ближнем инфракрасном диапазоне, полученные с помощью широкоугольной камеры – 3 (WFC3) и усовершенствованной обзорной камеры (ACS).   Предоставлено: ESA / Hubble & NASA     Имейте в виду, что глядя на Антенны, мы в каком-то смысле смотрим в будущее нашего Млечного Пути. Примерно через 4 миллиарда лет, как раз когда в ядре нашего Солнца иссякнет плавкий водород, Млечный Путь столкнется с М31, галактикой Андромеды. Подобно Антеннам, они будут бороться с переменным успехом, в итоге слившись в единую систему, которую многие уже окрестили Млекомедой.   В попытках описать необычный внешний вид этой сплетенной пары воображение наблюдателей дошло до предела. Самое распространенное прозвище, которое применяют к прижимающейся парочке — Антенны, из-за двух длинных нитей, похожих на самолетный след, которые на широкоугольных фотографиях простираются от каждой галактики. Эти «антенны» являются результатом приливных сил, поскольку галактики касаются друг друга. Некоторые предпочитают названия «Хвост кольцом» или «Крысиный хвост». Визуально пара больше напоминает запятую, креветку или даже головастика, если смотреть в средне- и высокоапертурные телескопы.   В приведенной ниже таблице перечислены индивидуальные характеристики.   Объект Тип RA DEC Зв. вел Размер NGC 4038 Галактика 12 01.9 -18 52.0 10.3 3.7'x1.7' NGC 4039 Галактика 12 01.9 -18 53.5 11.2 4.0'x2.2'   Чтобы навестись на Антенны, можно использовать две звезды в теле Ворона. Соедините линией северо-восточную звезду, Альгораб [дельту (δ) Ворона], с северо-западной звездой, Гиенах [гаммой (γ) Ворона], и переместитесь на такое же расстояние в юго-западном направлении. Ориентиром будет прямоугольный треугольник из звезд 7-й величины, который вы встретите на полпути. Продолжайте движение в том же направлении, и вы найдете NGC 4038 и NGC 4039 между двумя звездами 9-й величины. Таким образом, они расположены без малого в градусе на северо-восток от 31 Ворона с блеском 5.   При первом взгляде видно лишь одиночное свечение 10-й величины. Это NGC 4038. Есть ли что-то особенное по сравнению с описанием, которое подойдет для тысячи галактик? Ничего, до тех пор, пока не присмотришься. При 100× и выше становится ясно, что здесь что-то не так. Смотрите внимательно, и бесформенное свечение трансформируется в картинку в форме крюка с тусклым удлинением, уходящим к югу. Это удлинение — NGC 4039, светится слабо, с блеском около 11. Вонзающийся с запада темный клин разделяет галактики, как показано на моей зарисовке.   Выше: Антенны, зарисованные через 8-дюймовый (20 см) рефлектор автора.   С учетом сельского неба, в котором отсутствует охватывающая горизонт дымка, ни та ни другая галактика не кажется однородной. Наоборот, они выглядят комковатыми. Это не иллюзия. Вы видите последствия процесса слияния, огромные области звездообразования, в которых появляются новые солнца, пока мы наблюдаем издали. Наиболее очевидны узелки по краям NGC 4038, северной галактики в паре, хотя едва заметная пятнистость наблюдается и в NGC 4039.   У вас есть свой интересный сложный объект? Я, как и другие читатели, буду рад узнать о нем, а также о том, что у вас получилось с испытанием этого месяца. Пишите сообщения в комментариях к статье или в обсуждении этой рубрики на форуме.   Помните, что половина удовольствия — это азарт охоты. Игра началась!   Автор Phil Harrington Адаптированный перевод с английского RealSky.ru Публикуется с разрешения автора. Сайт автора www.philharrington.net Оригинал статьи на www.CloudyNights.com   Книга Фила Харрингтона "Cosmic Challenge", из которой выросла данная рубрика, доступна для приобретения.
  12. Космический вызов: Антенны

    Май 2017 Фил Харрингтон   Диапазон апертуры, рекомендованный в этом месяце: средние телескопы от 6 до 9,5 дюймов (15–23 см)   Объект: пара галактик NGC 4038 и NGC 4039 Просмотреть полную статью
  13. Друзья, я пользуюсь не своим акаунтом и мне предоставили его для пользования, так как я сегодня только зарегался и для размещения объявы нужно ждать месяц) Продаю Celestron CPC 800 за 110000 рублей, ему 1,5 года, ещё пол года гарантии есть! Сейчас его цена около 160000 тысяч.  Особенности модели: 203 мм Шмидт-Кассегрен с просветлением StarBright XLT; вилочная азимутальная монтировка с компьютерным наведением; стальной 2-дюймовый штатив с полочкой для аксессуаров; искатель 8х50; база данных на 40000 объектов с пультом управления и возможностью обновления через интернет; коррекция периодической ошибки PEC; встроенный GPS-модуль; программа дистанционного управления телескопом NexRemote и кабель телескоп-компьютер; порты для автогида и дополнительных устройств; Комплектация: телескоп Celestron CPC 800 с компьютерной системой наведения; 40-мм 1,25" окуляр (Plössl, 51x); искатель 8x50 мм; адаптер питания; пульт управления NexStar; программа управления телескопом NexRemote; кабель для соединения с персональным компьютером RS-232; 1,25" диагональное зеркало; регулируемый по высоте штатив. Встроенный GPS-модульТелескоп Celestron CPC имеет встроенный GPS-модуль, который самостоятельно определяет местоположение наблюдателя по орбитальным спутникам, а также загружает дату и время проведения наблюдений. Это позволяет не заносить вручную такие данные как широта, долгота, время и дата наблюдений. Характеристики: Диаметр объектива (апертура), мм 203,2 Фокусное расстояние, мм 2032           Светосила (относительное отверстие) f/10 Разрешение: критерий Рэлея  Разрешение: предел Дауэса 0,68 Проницающая способность (звездная величина, приблизительно) 14 Окуляры в комплекте 40 мм (51x) Посадочный диаметр окуляров, дюймов 1,25 Экранирование объектива: по площади  Экранирование объектива: по диаметру 10%/31%           Тренога стальная Тип монтировки азимутальная Скорости наведения 3 градуса в секунду Скорости сопровождения звездная, лунная, солнечная Режим ведения азимутальный, экваториальный Порты RS-232 порт для автогида порт для дополнительных устройств ПО NexRemote Калибровка системы наведения по ночному небу, автоматическая по двум звездам, по двум звездам, по одной звезде, по объектам Солнечной системы, экваториальная установка           Пульт управления 19-клавишный компьютерный контроллер с 2-cтрочным дисплеем База объектов 40 000 объектов, 400 пользовательских объектов Обновление через Интернет есть Габариты трубы, мм 432     Предмет наблюдения планеты Солнечной системы и объекты дальнего космоса Вес, кг 27,7
  14. Космический вызов: Leo I

    Апрель  Диапазон апертуры, рекомендованный в этом месяце: гигантские телескопы от 15 дюймов (38 см) и выше Объект: Leo I  Просмотреть полную статью
  15. Космический вызов: Leo I

    Семь десятилетий назад, просматривая фотопластинку Паломарского обзора неба вокруг блистательного Регула во Льве, астрономы Роберт Харрингтон (мой однофамилец) и А. Дж. Уилсон заметили тусклое световое пятно всего в полутора секундах севернее звезды. Поначалу они подумали, что свечение — всего лишь внутренний блик в объективе, вызванный побочным звездным светом, но вскоре стало очевидно, что они обнаружили нечто очень реальное.   Выше: весенняя карта из книги Star Watch Фила Харрингтона демонстрирует положение сложного объекта этого месяца.   Выше: поисковая карта рубрики «Космический вызов» этого месяца, взята из книги Cosmic Challenge Фила Харрингтона. Кликните по ссылке, чтобы загрузить версию для печати.    Сегодня их находка известна нам как Leo I, одна из множества тусклых карликовых сфероидальных галактик, вращающихся вокруг Млечного Пути. Полная масса Leo I эквивалентна всего лишь 20 миллионам солнечных масс. Это капля в галактическом море по сравнению с Млечным Путем, который можно сравнить с 600 миллионами солнечных масс.   Карликовые сфероидальные галактики представляют собой нечто загадочное. Подобно эллиптическим галактикам, они демонстрируют очень мало признаков туманности или звездообразования. Звезды Leo I, как и многих других карликовых галактик,  содержат крайне малую долю тяжелых элементов, т.е. элементов тяжелее водорода и гелия. Это говорит о том, что звезды эти очень старые, ведь в молодых более тяжелые элементы присутствуют в изобилии. Карликовые галактики, однако, содержат необычайно много темной материи. Более того, несмотря на весовую категорию, в карликовых сфероидальных галактиках больше темной материи, чем у любого другого типа галактик во Вселенной.   В исследовании под названием «Приливная эволюция дисковых карликовых галактик в потенциале Млечного Пути: формирование сфероидальных карликов»*, которое было проведено Ярославом Климентовским из Астрономического центра Николая Коперника в Варшаве (Польша) и его коллегами, предполагается, что карликовые сфероидальные галактики начинают жизнь в гало темной материи. Время от времени карликовые галактики вращаются вокруг и проходят вблизи более крупных галактик, с которыми они связаны гравитационно. При каждом близком проходе карлик лишается некоторой части своей первоначальной массы, включая звездообразующую туманность. И хотя эти самоубийственные маневры срывают облака межзвездной материи, гало темной материи остается по большей части нетронутым.   В созвездии Льва есть две карликовые сфероидальные галактики под названием, соответственно, Leo I и Leo II. Найти Leo I не проблема: просто наведитесь на Регул и посмотрите на 20' севернее.   Что такое? Вы его не видите? Не удивлен. Хотя совокупный блеск Leo I составляет 10, его поверхностная яркость ближе к 15-й звездной величине. Этого удручающе низкого значения в паре с ослепительным блеском Регула достаточно, чтобы скрыть от взгляда Leo I. Так и произошло со всеми классическими наблюдателями, например Мессье, Мешеном и Гершелями.   Успешное обнаружение Leo I потребует небольшого планирования. Для начала переключитесь на достаточно высокое увеличение, чтобы можно было вывести Регул за пределы поля зрения. Однако не поддавайтесь искушению использовать слишком большое увеличение, потому что слабое свечение галактики легко растворяется в звездном фоне. Leo I охватывает около 10', т.е. в радиусе простирается примерно на 1/4 пути до Регула.   Имейте в виду, что после наведения на Регул ваш «рабочий глаз» больше не будет полностью адаптированным к темноте. Поэтому нацельтесь на Регул другим глазом и уберите звезду из поля прежде, чем переключитесь назад. А теперь сравните вид с моей зарисовкой ниже. Заметили пару звезд 12-й величины неподалеку от северо-восточного края галактики, а также треугольник из звезд с блеском 12 на северо-западе? Поместите их с краю поля, а затем медленно просматривайте область снова и снова, пока не увидите смутное овальное свечение галактики. Помните, что оно окажется довольно большим в поле зрения.   Выше: Leo I, зарисовка через 18-дюймовый (45,7 см) рефлектор автора.   Для наблюдения Leo I в мой 18- дюймовый рефлектор лучше всего подходит 10-мм окуляр Tele Vue Radian. Комбинация дает увеличение 206× с истинным полем зрения порядка 17'. И хотя Leo I занимает приличный кусок поля зрения, по краям остается достаточно открытого неба, чтобы идентифицировать галактику.   Выискивая Leo I, обратите внимание на IC 591, маленькую спиральную галактику всего в 15' западнее. Ищите крошечное тусклое пятнышко к западу от очень слабой звезды.   Используя правильный окуляр и зная поле, вы сможете сравнительно легко добавить этот объект в список своих побед. Но не будьте слишком самонадеянны. Обнаружение его брата, Leo II — даже более сложная задача. Однако оставим это для будущей статьи.   У вас есть свой интересный сложный объект? Я, как и другие читатели, буду рад узнать о нем, а также о том, что у вас получилось с испытанием этого месяца. Пишите сообщения в комментариях к статье или в обсуждении этой рубрики на форуме.   Помните, что половина удовольствия — это азарт охоты. Игра началась!   *«Tidal Evolution Of Disky Dwarf Galaxies In The Milky Way Potential: The Formation Of Dwarf Spheroidals», Jaroslaw Klimentowski, Ewa L. Lokas, Stelios Kazantzidis, Lucio Mayer, and Gary A. Mamon [Mon.Not.Roy. Astron.Soc. 397 (2009)] .   Автор Phil Harrington Адаптированный перевод с английского RealSky.ru Публикуется с разрешения автора. Сайт автора www.philharrington.net Оригинал статьи на www.CloudyNights.com   Книга Фила Харрингтона "Cosmic Challenge", из которой выросла данная рубрика, доступна для приобретения.
  16. Космический вызов: Jonckheere 900

    Немногие астрономы-любители знакомы с именем Роберта Джонкхиера. Это французский наблюдатель двойных звезд, который за свою шестидесятилетнюю карьеру провел исследования в целом ряде обсерваторий, включая Страсбургскую во Франции, Гринвичскую королевскую в Англии, а также в обсерваторию Макдональд в Техасе. Работа всей его жизни в 1962 году увенчалась публикацией Общего каталога 3350 двойных звезд — расширенной версии его более ранней работы: «Перечень и параметры двойных звезд, обнаруженных визуально с 1905 по 1916 год в пределах 105° от Северного полюса, с разделением ниже 5"».   Выше: зимняя карта из книги Star Watch Фила Харрингтона демонстрирует положение сложного объекта этого месяца.   Выше: поисковая карта рубрики «Космический вызов» этого месяца, взята из книги Cosmic Challenge Фила Харрингтона. Кликните по ссылке, чтобы загрузить версию для печати.    Одна из этих 3350 двойных звезд, представленная здесь, особенно интересна. В 1912 году, используя 13-дюймовый рефрактор в обсерватории Лилльского университета во Франции, Джонкхиер обнаружил смутную, расплывчатую пару, погруженную в планетарную туманность. В следующем году Джонкхиер заявил об открытии в журнале Astronomische Nachrichten (том 194, стр. 47) и включил его в свой каталог под номером 900.   Удивительно, что последующие наблюдения Эдварда Эмерсона Барнарда в 1913 и 1915 годах через 40-дюймовый рефрактор Йеркской обсерватории выявили планетарку, но не обнаружили никаких признаков двойной звезды. Барнард описал туманность как «довольно яркий, неопределенный, голубовато-белый диск; возможно, чуть ярче в передней части... нет центрального сгущения и никаких следов центральной двойной звезды» (Astronomical Journal, т. 30, выпуск 719, стр. 208–208; 1917). Это странно, так как Джонкхиер, опытный наблюдатель, явно описал, что видел две звезды внутри туманности. Как он мог так ошибиться?   Планетарная туманность Джонкхиера, сокращенно J 900 в большинстве ссылок, находится в созвездии Близнецы и является достаточно яркой, чтобы можно было разглядеть ее в направленный прямо на нее 4-дюймовый телескоп. Навестись на J 900 задача несложная, благодаря ее заметному местоположению у ног Близнецов. Начав с Альхены [гаммы (γ) Близнецов], переместитесь на северо-запад к 23 Близнецов и далее к 20 Близнецов, обе звезды сияют с блеском 7. Далее двигайтесь на запад к астеризму из звезд 8-й величины в форме перевернутого воздушного змея, для этого перелетите на полградуса к западу от 20 Близнецов и затем еще на 45' западнее к ромбу из солнц 9-й величины. J 900 находится в 10' к западу от этой четверки. Всего в 11" юго-западнее планетарной туманности расположена несвязанная с ней звезда с блеском 12,5, что на первый взгляд выглядит как широкая двойная. Однако Джонкхиер в своем сообщении об открытии докладывал не об этой иллюзии.   Самая большая проблема J 900 не в ее тусклости, а скорее в том, насколько она мала. В мой 4-дюймовый рефрактор на 40× планетарка весьма успешно маскируется под очередную слабую звезду, проявляя истинную природу лишь при мигании узкополосным или O-III фильтром. На увеличении 200× появляется намек на крошечный диск, хотя разглядеть точную форму невозможно. Центральная звезда 16-й величины также значительно ниже порога обнаружения.   Выше: зарисовка J 900 в 4-дюймовый рефрактор автора.   Итак, что же на самом деле видел Джонкхиер? Ключ к разгадке в отчете Барнарда. В своем описании Барнард отмечает, что туманность выглядит неравномерно подсвеченной. При рассмотрении в большие телескопы J 900 демонстрирует странно прямоугольную форму, которую подчеркивают два ярких противоположных лепестка, один на западе и один на востоке. По всей вероятности, это и видел Джонкхиер. Он просто неверно интерпретировал две яркие зоны как двойную звезду.   У вас есть свой интересный сложный объект? Я, как и другие читатели, буду рад узнать о нем, а также о том, что у вас получилось с испытанием этого месяца. Пишите сообщения в комментариях к статье или в обсуждении этой рубрики на форуме.   Помните, что половина удовольствия — это азарт охоты. Игра началась!   Автор Phil Harrington Адаптированный перевод с английского RealSky.ru Публикуется с разрешения автора. Сайт автора www.philharrington.net Оригинал статьи на www.CloudyNights.com   Книга Фила Харрингтона "Cosmic Challenge", из которой выросла данная рубрика, доступна для приобретения.
  17. Космический вызов: Jonckheere 900

    Март Диапазон апертуры, рекомендованный в этом месяце: гигантские бинокли  и телескопы от 3 до 5 дюймов (7,5–12,7 см)   Объект: Jonckheere 900 Просмотреть полную статью
  18.   Недавно в NASA заявили об окончательной сборке нового телескопа JWST Телескоп следующего поколения, который станет заменой телескопа Хаббл.   http://hi-news.ru/technology/spustya-20-let-dzhejms-uebb-postroen-kak-on-ustroen-i-chem-znamenit.html    
  19. Есть одна тайна в созвездии Рыси. История пошла с 1790 года, когда Уильям Гершель открыл маленькое туманное свечение примерно в 2½° к северо-западу от звезды 27 Рыси. Позже он добавил его в список «очень тусклых туманностей» под номером 830 (сокращенно H-III-830), и судя по всему, отправился дальше, не заметив второго, более тусклого пятнышка точно на северо-востоке.   Этот второй объект 66 лет спустя обнаружил Уильям Парсонс, 3-й лорд Росс, в свой 72-дюймовый рефлектор «Левиафан». Позже оба объекта были включены в Новый общий каталог (NGC) Джона Дрейера. NGC 2474 описывается как «тусклая, довольно маленькая, удлиненная?, яркая середина, как очень маленькая звезда?, с большой звездой на севере». В описании NGC 2475 просто отмечено: «составляет двойную туманность с NGC 2474».   Выше: зимняя карта звездного неба из книги Star Watch Фила Харрингтона.   Выше: поисковая карта рубрики «Космический вызов» этого месяца, взята из книги Cosmic Challenge Фила Харрингтона. Кликните по PK164+3.1_map_print.pdf, чтобы загрузить версию для печати.    Загадка NGC 2474 и 2475 окончательно оформилась в 1939 году, когда Ребекка Джонс и Ричард Эмберсон, астрономы из Гарвардской обсерватории, обнаружили на обзорных фотографиях планетарную туманность, которая находилась почти в тех же координатах, что и NGC 2474/2475. Туманность представляла собой крупное облако кольцевого типа, две доли которого были заметно более яркими.   Джонс и Эмберсон сообщили о своем открытии в статье «Новая большая планетарная туманность» в августовском выпуске бюллетеня обсерватории Гарвардского колледжа за 1939 год («A Large New Planetary Nebula»; Harvard College Observatory Bulletin No. 911, pp.11-13, August 1939):   «На одной из недавних фотопластин было обнаружено тусклое туманное кольцо, объединяющее два уплотнения — NGC 2474, зарегистрированное сэром Джоном Гершелем, и NGC 2475. Последнее было открыто лордом Россом, который описал его как двойную туманность, включающую объект Гершеля».   Упс. Мало того, что авторы приписали открытие NGC 2474 Джону Гершелю, а не Уильяму, они ошибочно сочли NGC 2474 и NGC 2475 единой планетарной туманностью.   Однако ошибку не замечали более 40 лет. Этого хватило, чтобы NGC 2474/75 была неправильно отнесена к планетаркам в оригинальном каталоге планетарных туманностей Перека и Когоутека (PK), а также в ряде других надежных источников.   После четырех десятилетий путаницы, во многом благодаря исследованию Рональда и Нэнси Бута из обсерватории Макдональд Техасского университета, мы узнали, что NGC 2474 и NGC 2475 представляют собой тесную пару эллиптических галактик, обнаруженных Гершелем и Парсонсом соответственно. Ищите их всего в 2,4' к юго-западу от золотой звезды SAO 26594 с блеском 9 (той самой «большой звезды» в описании NGC).   Характер объектов теперь установлен, но осталось некоторое несоответствие между их звездной величиной и визуальным проявлением. Обе галактики имеют фотографический блеск 14, при этом NGC 2474 достаточно яркая, чтобы ее можно было заметить в 8-дюймовый инструмент, а NGC 2475 требует как минимум 12 дюймов.   Те ли это галактики, что обнаружили Джонс и Эмберсон? Ответ на «загадку пропавшего рысёнка»* расположен на полградуса севернее. Там мы найдем планетарную туманность (настоящую планетарную туманность), которая сегодня обозначается как Jones-Emberson 1 и входит в пересмотренный каталог Перека-Когоутека под названием PK 164 + 31.1.   Нам легко критиковать Эмберсона и Джонс за их промашку, тем более, что они сознавали, что местоположение планетарки не вполне соответствует координатам NGC 2474. Но взгляните на туманность в гигантский любительский телескоп, и вы увидите ту же двойную туманность, о которой говорится в описании NGC. Как назло, PK 164 + 31.1 не типичная «кольцевая туманность», две ее яркие доли соединяются тусклыми противоположными дугами. Визуальное сходство с парой тусклых галактик не вызывает сомнений.   PK 164 + 3.1 заметна и в небольшие телескопы, однако чтобы наблюдать полное кольцо, берите максимально большую апертуру, которую можете задействовать. Вы найдете объект в 21' к западу от характерного трапецоида из звезд 9–11-й звездной величины. Используйте от 100× до 150×, чтобы увидеть полный охват, но выше не стремитесь, т.к. более высокое увеличение работает против планетарки. Что касается фильтров, то узкополосный фильтр для наблюдения туманностей увеличит шансы различить 360-градусное кольцо, а вот фильтр O-III скорее сведет их на нет. Боковым зрением я видел полное кольцо в мой 18-дюймовый телескоп на 121×. Две доли были заметны напрямую, южный узел выглядел наиболее ярко. Мне удалось уловить лишь мимолетный отблеск полного кольца, и то лишь боковым зрением.   Выше: PK 164 + 31.1, зарисованная через 18-дюймовый рефлектор автора.   У вас есть свой интересный сложный объект? Я, как и другие читатели, буду рад узнать о нем, а также о том, что у вас получилось с испытанием этого месяца. Пишите сообщения в комментариях к статье или в обсуждении этой рубрики на форуме.   Помните, что половина удовольствия — это азарт охоты. Игра началась!   * «Пропавший рысёнок», The missing lynx — название 3D-мультфильма. Автор Phil Harrington Адаптированный перевод с английского RealSky.ru Публикуется с разрешения автора. Сайт автора www.philharrington.net Оригинал статьи на www.CloudyNights.com   Книга Фила Харрингтона "Cosmic Challenge", из которой выросла данная рубрика, доступна для приобретения.
  20. Февраль   Диапазон апертуры, рекомендованный в этом месяце: телескопы от 15 дюймов (38 см) и выше Объекты:  NGC 2474 и NGC 2475, PK 164 + 31.1 Просмотреть полную статью
  21. Космический вызов: IC 5146 (Кокон) и B168

    Эмиссионные туманности, или области H II, являются наиболее сложными объектами глубокого космоса для визуального обнаружения. Проблема в том, что они испускают свет в очень узком сегменте видимой части спектра, и наиболее яркое излучение приходится на красные длины волн. Как назло, человеческий глаз практически слеп по отношению к красному свету при слабом освещении.   Вероятно, единственный объект, который различить еще сложнее, чем эмиссионные туманности, это мрачный профиль темной туманности. Эти пылевые облака сами по себе невидимы, мы замечаем только их силуэты на звездном фоне. Нет звездного фона — нет темной туманности; всё просто.   Всё сказанное подводит нас к двойному испытанию этого месяца в созвездии Лебедя. IC 5146, известная многим под названием туманность Кокон, является участком светящегося газа, а Barnard 168 представляет собой тонкую, извилистую полосу тьмы, которая выходит из туманности и простирается далеко на северо-запад.   Выше: осенняя карта звездного неба из книги Star Watch Фила Харрингтона.   Выше: поисковая карта рубрики «Космический вызов» этого месяца, взята из книги Cosmic Challenge Фила Харрингтона. Кликните по Cocon_map.pdf, чтобы загрузить версию для печати.    Чтобы распознать эту случайную небесную пару, начните с яркого рассеянного скопления М39 к северо-востоку от Денеба [альфы (α) Лебедя]. Это скопление известно как яркая неплотная группа звезд, охватывающая область неба больше полной Луны, и лучше воспринимается на очень малых увеличениях. Обязательно найдите время, чтобы насладиться им.   От M39 направьте телескоп на 2½° восточнее-северо-восточнее к звезде 4-й величины Пи2 (π2) Лебедя, а затем медленно просматривайте область южнее, поджидая момент, когда звездный фон резко снизится. Это и будет Barnard 168. Из-за размера — больше градуса от края до края — Barnard 168 лучше всего оценивать через бинокль. Перед моим 16×70 открывается извилистый поток черных чернил, протекающий через долину звезд, который я попытался воссоздать на зарисовке ниже. Выше: зарисовка IC 5148 и B168, вид через бинокль автора 16×70.   Следуя по темному облаку к его восточной части, вы доберетесь до пары звезд с блеском 9,5. Обе погружены в едва различимые облака Кокона. Мой 4-дюймовый рефрактор, оснащенный 22-мм окуляром Tele Vue Panoptic (46×), передает лишь легчайший намек на саму туманность, которая выглядит как овальное свечение, окружающее эти звезды.   Так называемые туманные фильтры демонстрируют среднюю успешность с Коконом. При наблюдении в 4-дюймовый рефрактор наибольший, хотя тоже весьма скромный, эффект дал узкополосный фильтр. Линейный фильтр H-beta также положительно влияет на Кокон, но только при больших апертурах. На моем 4-дюймовом рефракторе при использовании H-beta туманность исчезает. Удивительно, но фильтр O III, наиболее полезный для всех эмиссионных туманностей по мнению опытных наблюдателей, непригоден для IC 5146, независимо от апертуры телескопа.   Вопрос о первооткрывателе IC 5146 является предметом обсуждений. Большинство источников указывает на Томаса Э. Эспина, который обнаружил туманность 13 августа 1899 года. Эспин был британским священнослужителем и астрономом, специализирующимся на изучении двойных звезд в своей обсерватории в Тоу Лоу, маленьком городке в графстве Дарем (Англия). Однако некоторые оспаривают роль Эспина в качестве первооткрывателя. Несмотря на то что он, скорее всего, был первым визуальным наблюдателем Кокона, фотографически туманность была обнаружена еще 11 октября 1893 года Эдвардом Эмерсоном Барнардом, который использовал 6-дюймовый объектив Willard Ликской обсерватории.   Часть источников утверждает, что IC 5146 является звездным скоплением, а не туманностью. В действительности скопление более сотни молодых звезд внедрено в туманность Кокон. Оригинальные заметки Эспина, однако, описывают его открытие как «слабое свечение около 8 угловых минут [в поперечнике], хорошо заметное каждую ночь». Запись в Индекс-каталоге Дрейера (IC) перекликается со словами Эспина, относя IC 5146 к «очень яркому, очень большому, неравномерно тусклому объекту, в центре которого звезда с блеском 9,5».   Честь первого упоминания скопления Кокона как отдельного объекта принадлежит шведскому астроному Перу Коллиндеру. В 1931 году он включил его в список рассеянных звездных скоплений под названием Collinder 470. Согласно книге «Звездные скопления» Брента Арчинала и Стивена Хиниса (издательство Willmann-Bell, 2003), сам Коллиндер, по всей вероятности, и стал причиной путаницы, когда неправильно отметил скопление как IC 5146. С тех пор эта ошибка распространилась на многие другие источники, в том числе первое издание популярного атласа «Уранометрия 2000.0». Современные исследования показывают, что скоплению Collinder 470 принадлежит 110 звезд, включая две звезды с блеском 9,5, внедренные в облака Кокона. К сожалению, большинство остальных звезд скопления слишком тусклы, чтобы можно было увидеть их в любительские телескопы.   У вас есть свой интересный сложный объект? Я, как и другие читатели, буду рад узнать о нем, а также о том, что у вас получилось с испытанием этого месяца. Пишите сообщения в комментариях к статье или в обсуждении этой рубрики на форуме.   Помните, что половина удовольствия — это азарт охоты. Игра началась!     Автор Phil Harrington Адаптированный перевод с английского RealSky.ru Публикуется с разрешения автора. Сайт автора www.philharrington.net Оригинал статьи на www.CloudyNights.com   Книга Фила Харрингтона "Cosmic Challenge", из которой выросла данная рубрика, доступна для приобретения.
  22. Космический вызов: NGC 6803 и NGC 6804

    Вот вам две по цене одной, пара сложных задач, расположенных в пределах 1° друг от друга в созвездии Орла. Обе эти планетарные туманности представляют собой интересные испытания для небольших апертур, каждая по-своему.   Выше: летняя карта звездного неба из книги Star Watch Фила Харрингтона.     Выше: поисковая карта рубрики «Космический вызов» этого месяца, взята из книги Cosmic Challenge Фила Харрингтона. Кликните по здесь, чтобы открыть версию для печати в новом окне.   Диапазон апертуры, рекомендованный в этом месяце: гигантские бинокли (> = 70мм), телескопы от 3 до 5 дюймов (7–13 см)   Несмотря на близость друг к другу в нашем небе, NGC 6803 и NGC 6804 не связаны физически, а что касается внешнего вида, дальше друг от друга просто некуда.   Давайте начнем с NGC 6803, которая находится чуть меньше чем в 4° к западу от Таразеда (гаммы Орла). 17 сентября 1882 года американский астроном Эдуард Пикеринг (1846–1919), использующий 15-дюймовый рефрактор Гарвардской обсерватории, стал первым, кто заметил эту крошечную цель. Пикеринг наиболее известен работами по определению характеристик звезд путем изучения их спектров. Откровенно говоря, большей частью своего успеха Пикеринг обязан вычислительной работе, которую выполняли его ассистентки, более десятка женщин-астрономов. Его команда, известная в определенных кругах под неполиткорректным названием «гарем Пикеринга», включала Энни Джамп Кэннон, Генриетту Суон Ливитт, Антонию Мори и даже бывшую служанку Пикеринга, Вильямину Флеминг. Все они продолжили вносить важный вклад в науку самостоятельно.     Вы найдете NGC 6803 в конце извилистой линии из восьми звезд 8-й величины, всего в 10' южнее двойной звезды HD 183850 с блеском 9. Сложность в том, чтобы различить NGC 6803 на богатом звездном фоне окружающих звезд, так как диаметр ее крошечного диска всего 6". Даже при наблюдении на 200x в 4-дюймовый рефрактор ночью с исключительно устойчивой атмосферой трудно сказать, где планетарка, а где тусклые окружающие звезды, не используя некоторую помощь.     Самое время обратиться к узкополосному фильтру для наблюдения туманностей, например Lumicon UHC или Orion UltraBlock. Фильтр O-III тоже неплохо справляется, хотя затемняет поле гораздо больше, чем UHC. Однако для таких крохотных планетарок, как NGC 6803, надо не просто накрутить фильтр на баррель окуляра. Вместо этого направьте телескоп на поле, предположительно содержащее NGC 6803, и, держа фильтр между окуляром и глазом, внимательно смотрите. Поочередно то вводя, то выводя фильтр из оптической системы, вы увидите, как «мигает» планетарная туманность. Звезды как объекты широкополосного излучения будут тускнеть более заметно, чем планетарка, которая концентрирует выбросы своей энергии лишь в узкой части видимого спектра. Быстро вводите и выводите фильтр, проверяя каждую звездную точку, которую встретите, и у планетарки не останется другого выхода кроме как проявить себя. Поймав NGC 6803, накрутите туманный фильтр на баррель окуляра, чтобы посмотреть, получится ли различить ее диск.     Оставьте фильтр на месте поскольку мы переходим ко второй части данной задачи. Переместитесь на 20' юго-восточнее NGC 6803, к звезде с блеском 7, а затем еще на 30' южнее — к двойной звезде BU 976AB, близко расположенной паре солнц 6-й величины, которая  является хорошим тест-объектом разрешения для 3-дюймовых телескопов. NGC 6804 находится всего в 11' на юго-западе от нее.     В отличие от NGC 6803, которая является сложной задачей благодаря своей миниатюрности, NGC 6804 имеет 35" в диаметре. Эта планетарная туманность достаточно велика, чтобы можно было различить ее на увеличении 100х в 4-дюймовый рефрактор. Мои заметки напоминают, что я видел ее «сначала боковым зрением, а затем напрямую; тусклый однородный диск сероватого света, плавающий внутри узнаваемого астеризма в форме воздушного змея». Объективы большей апертуры добавляют несколько тусклых звезд непосредственно вокруг планетарки, создавая призрачный псевдотрехмерный эффект, что весьма впечатляет. Эти же инструменты могут показать и центральную звезду туманности 14-й величины.   Вероятно, вид туманности в обрамлении несвязанных с ней звезд стал причиной  ошибки Уильяма Гершеля, который отнес NGC 6804 к рассеянным скоплениям, обнаружив объект в августе 1791 года. Только после скрупулезного исследования с помощью 100-дюймового рефлектора обсерватории Маунт-Вилсон, выполненного Френсисом Пизом в 1917 году, была раскрыта истинная природа туманности. Выше: зарисовка NGC 6804 в мой 4-дюймовый рефрактор 4/9,8 на увеличении 100х.   Это лишь две из восьми планетарных туманностей в Орле, которые вошли в Новый общий каталог. Остальные: NGC 6741, 6751, 6772, 6781, 6790 и 6852. Почему бы не попробовать на них  силы и не посмотреть, сколько получится найти в небольшой телескоп? Или большой, если уж на то пошло!   У вас есть свой интересный сложный объект? Я и другие читатели будем рады узнать о нем, а также о том, что у вас получилось с испытанием этого месяца. Пишите сообщения в комментариях к статье или в обсуждении этой рубрики на форуме.   Помните, что половина удовольствия — это азарт охоты. Игра началась! Автор Phil Harrington Адаптированный перевод с английского RealSky.ru Публикуется с разрешения автора. Сайт автора www.philharrington.net Оригинал статьи на www.CloudyNights.com   Книга Фила Харрингтона "Cosmic Challenge" — предтеча данной рубрики — доступна для приобретения
  23. здравствуйте, решила приобрести первый телескоп, модели бюджетные. хотелось бы узнать ваше мнение на счет них.  бюджет не более 10т.р., понимаю, что кольца сатурна не посчитать с этими ребятами. ориентируюсь на изучение поверхности луны и созвездий. для балконных наблюдений и выездов на природу за город. (самарская область)  Sky-Watcher BK 707AZ2 Sky-Watcher BK 767AZ1 Sky-Watcher BK 705AZ2
  24. Предлагаю начать этот выпуск с загадки. Что большое и круглое, находится под боком, однако его почти невозможно увидеть? Если вы ответили «карликовая галактика в созвездии Печь», то угадали! Карликовая сфероидальная система Печи охватывает область 17'×13' в небе поздней осени и расположена примерно в 530 000 световых годах от Млечного Пути. Она входит в Местную группу галактик. Уровень блеска 9,3 вроде бы говорит о том, что объект должен быть ярким и заметным. Однако взглянув на нее, мы обнаружим, что это не так. Даже на лучших фотографиях удалось запечатлеть лишь чрезвычайно тусклую эллиптическую дымку, присыпанную несколькими звездами 19-й величины!   Выше: осенняя карта звездного неба из книги Star Watch Фила Харрингтона.   Выше: поисковая карта рубрики «Космический вызов» этого месяца, взята из книги Cosmic Challenge Фила Харрингтона. Кликните по Поисковой карте.pdf, чтобы загрузить версию для печати.    Карликовая галактика Печи парадоксальна. Несмотря на то что сама галактика недосягаема для наших телескопов даже в самых темных наблюдательных местах, четыре из ее шести известных шаровых скоплений доступны для 10-дюймовых (в крайнем случае 12-дюймовых) телескопов.   Из этих отдаленных шаровиков NGC 1049 самый яркий, так что с него и начнем. Интересно, что карлик в созвездии Печь был обнаружен лишь в 1938 году Харлоу Шепли, при этом скопление NGC 1049 было найдено веком ранее, когда Джон Гершель каталогизировал южное небо на мысе Доброй Надежды. Конечно, Гершель не понимал ни истинного местоположения, ни удаленности своей находки.   Частично сложность NGC 1049 порождается определением его положения. Печь не то созвездие, которое легко увидеть. Лучше всего начать с пятиугольника, представляющего хвост Кита, и спуститься примерно на 35° южнее вдоль границы Кита-Эридана до беты (β) Печи 3-й величины. Бинокль, несомненно, поможет в этом путешествии. Добравшись до беты, ищите небольшой равнобедренный треугольник южнее, образованный этой-1 (η-1), этой-2 (η-2) и этой-3 (η-3) Печи. Следуйте «указателю» треугольника (эте-1) в северо-западном направлении до лямбды-2 (λ-2) Печи. NGC 1049 находится примерно в ¾° к северо-востоку от лямбды-2.   Некоторые наблюдатели утверждают, что видели NGC 1049 в телескопы не больше 6 дюймов, но обычно объект считается трудной добычей даже для 10-дюймового инструмента на пригородном небе. Мой старый Ньютон f/4,5 с апертурой 13,1 дюйма показал NGC 1049 как круглое свечение, занимающее всего порядка 1 угловой минуты в поперечнике и сияющее с блеском около 13. На увеличении 125× я смог разглядеть лишь смутное центральное ядро, похожее на звезду. На 214× ядро стало чуть более отчетливым, но было мало надежды увидеть отдельные звезды, самая яркая из которых имеет блеск 18,4.   Еще три шаровых скопления в карлике Печи также подвластны лишь крупным наблюдательным инструментам. Наиболее яркий из них шаровик под названием Fornax 5 расположен в 40' к северо-востоку от NGC 1049. В книге «Справочник наблюдателя и каталог дипскай объектов» (Observing Handbook and Catalogue of Deep-Sky Objects, Cambridge University Press, второе издание 2003 г.) авторы Кристиан Лугинбюль и Брайан Скифф сообщают, что заметили в 6-дюймовый телескоп и NGC 1049, и Fornax 5 как звездоподобные точки. Ах, эта жизнь в Аризоне! В 12-дюймовый инструмент Fornax 5 показалась им даже чуть более яркой, чем NGC 1049. При этом на Восточном побережье она произвела на меня впечатление более маленькой и тусклой. А что скажете вы?   Шаровое скопление Fornax 4 меньше, и несмотря на это тусклее. Ищите крошечный расплывчатый диск примерно в 7' к востоку-юго-востоку от звезды 8-й величины и в 18' юго-восточнее NGC 1049.   Fornax 2 выглядит самым крупным из четырех, но из-за чрезвычайно низкой поверхностной яркости его трудно идентифицировать. Ищите его примерно в 37' юго-западнее NGC 1049. Лугенбюль и Скифф говорят нам, что скопление наблюдается в их 12-дюймовый рефлектор Кассегрена на увеличении 250×, но у меня на Лонг-Айленде ни разу не получилось повторить этот подвиг с помощью Ньютона с апертурой 13,1 дюйма. Придется рассмотреть вопрос о переезде!   У нас остались два шаровых скопления, которые можно различить только в самые большие телескопы. Fornax 1 находится в 23' севернее лямбды-2. Его диск размером 0,8' имеет блеск всего 15,6. Fornax 6, расположенное недалеко от центра своей родительской галактики, еще тусклее и меньше. Все шаровики нанесены на карту выше. Удачи в обнаружении любого из них!   Выше: изображение из Цифрового обзора неба — 2 (DSS-2) карликовой галактики в созвездии Печь вместе с ее шестью шаровыми скоплениями, которые бросают нам вызов в этом месяце. Предоставлено ESO / DSS-2.     У вас есть свой интересный сложный объект? Я, как и другие читатели, буду рад узнать о нем, а также о том, что у вас получилось с испытанием этого месяца. Пишите сообщения в комментариях к статье или в обсуждении этой рубрики на форуме.   Помните, что половина удовольствия — это азарт охоты. Игра началась! Автор Phil Harrington Адаптированный перевод с английского RealSky.ru Публикуется с разрешения автора. Сайт автора www.philharrington.net Оригинал статьи на www.CloudyNights.com   Книга Фила Харрингтона "Cosmic Challenge", из которой выросла данная рубрика, доступна для приобретения.
  25. Декабрь 2016   Диапазон апертуры, рекомендованный в этом месяце: телескопы от 10 до 14 дюймов (25–36 см)   Объекты: NGC 1049, Fornax 5, Fornax 4, Fornax 2, Fornax 1 и Fornax 6 Просмотреть полную статью